Numerical Simulation of Thermal Diffusivity Measurements With the Laser-Flash Method to Evaluate the Effective Property of Composite Materials

Author:

Potenza M.1,Coppa P.1,Corasaniti S.1,Bovesecchi G.1

Affiliation:

1. Department of Industrial Engineering, Università degli Studi di Roma “Tor Vergata,” Rome 00133, Italy

Abstract

Abstract The laser-flash method (LFM) is a technique commonly used to measure thermal diffusivity of homogeneous and isotropic materials, but can also be applied to macroscopically inhomogeneous materials, such as composites. When composites present thermal anisotropy, as fiber-reinforced, LFM can be used to measure the effective thermal diffusivity (αeff) in the direction of heat flux. In this work, the thermal behavior of composites during thermal diffusivity measurements with the LFM was simulated with a finite element model (FEM) using a commercial software. Three composite structures were considered: sandwich layered (layers arranged in series or parallel), fiber-reinforced composites, and particle composite (spheres). Numerical data were processed through a nonlinear least-square fitting (NL-LSF) to obtain the effective thermal diffusivity of the composite. This value has the meaning of “dynamic effective thermal diffusivity.” Afterward, the effective thermal conductivity (λeff) is calculated from the dynamic effective thermal diffusivity, equivalent heat capacity, and density of the composite. The results of this methodology are compared with the analytically calculated values of the same quantity. This last assumes the meaning of “static effective thermal conductivity.” The comparison of the dynamic and static property values is so related to the inhomogeneity of the samples, and a deviation of the temperature versus time trend from the analytical solution for the perfectly homogeneous sample gives information about the lack of uniformity of the sample.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference31 articles.

1. Effective Thermal Conductivity of Composites;Int. J. Heat Mass Transfer,2014

2. Further Considerations on Anisotropic Thermal Efficiency of Symmetric Composites;Int. J. Heat Mass Transfer,2015

3. Thermal Anisotropic Properties of Composite Materials,2012

4. Theoretical Prediction of the Anisotropic Effective Thermal Conductivity of Composite Materials,2012

5. A Numerical Model to Explain Experimental Results of Effective Thermal Conductivity Measurements on Unsaturated Soils;Int. J. Thermophys.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3