Thermal Material Property Evaluation Using through Transmission Thermography: A Systematic Review of the Current State-of-the-Art

Author:

Ali Zain1ORCID,Addepalli Sri1ORCID,Zhao Yifan1ORCID

Affiliation:

1. School of Aerospace, Transport and Manufacturing (SATM), Cranfield University, Cranfield MK43 0AL, UK

Abstract

Determining thermal material properties such as thermal diffusivity can provide valuable insights into a material’s thermal characteristics. A well-established method for this purpose is flash thermography using Parker’s half-rise equation. It assumes one-dimensional heat transfer for thermal diffusivity estimation through the thickness of the material. However, research evidence suggests that the technique has not developed as much as the reflection mode over the last decade. This systematic review explores the current state-of-the-art in through-transmission thermography. The methodology adopted for this review is the SALSA framework that seeks to Search, Appraise, Synthesise, and Analyse a selected list of papers. It covers the fundamental physics behind the technique, the advantages/limitations it has, and the current state-of-the-art. Additionally, based on the Population, Intervention, Comparison, Outcome, and Context (PICOC) framework, a specific set of inclusion and exclusion criteria was determined. This resulted in a final list of 81 journal/conference papers selected for this study. These papers were analysed both quantitatively and quantitatively to identify and address the current knowledge gap hindering the further development of through-transmission thermography. The findings from the review outline the current knowledge gap in through-transmission thermography and the challenges hindering the development of the technique, such as depth quantification in pulsed thermography and the lack of a standardised procedure for conducting measurements in the transmission mode. Overcoming some of these obstacles can pave the way for further development of this method to aid in material characterisation.

Funder

EPSRC

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3