Design of Direct On-Seabed Sliding Foundations

Author:

Deeks Andrew1,Zhou Hongjie1,Krisdani Henry1,Bransby Fraser1,Watson Phil1

Affiliation:

1. Advanced Geomechanics, Perth, WA, Australia

Abstract

This paper describes a new framework for the geotechnical design of pipeline-related foundations (e.g. foundations for PLETs and Tees) designed to slide directly over the seabed during pipeline operation. This approach can present considerable savings in terms of fabrication and construction costs because of reduced foundation sizes. Over the design life, a pipeline is likely to endure many thermal/ pressure load cycles due to product and flow rate variations during operation. These cycles result in the foundation sliding back and forth across the seabed within a footprint. These loads and corresponding motions impose cyclic shear stresses on the soil that can (i) degrade foundation bearing capacity and (ii) cause additional foundation settlement. Often the key design consideration is whether or not the cumulative settlements will eventually compromise the integrity of the pipeline system to which the PLET and its associated foundation are attached. In addition to consolidation and creep, two key mechanisms are shown to control cyclic foundation settlement: (i) bearing mechanism induced burial and (ii) cyclic shear stress driven soil volume reduction. Their relative significance depends on the soil conditions (soil state) and input pipeline movements. The paper presents key aspects required for the design of direct on-seabed sliding foundations, including the soil parameters and associated testing required. Validation of the design approach is illustrated by comparison to laboratory model tests performed on carbonate soils. The impact of soil properties on potential foundation performance is illustrated with a design example and the importance of conducting site specific soil testing and settlement analyses is emphasised. It is also illustrated that close integration of the pipeline, structural and geotechnical analysis is necessary to reliably quantify system performance of these novel foundations.

Publisher

American Society of Mechanical Engineers

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3