The effect of soil type on the behaviour of a tolerably mobile subsea foundation

Author:

Jia Tianqiang1,Stanier Sam2,Watson Phil3,Feng Xiaowei4,Gourvenec Susan5

Affiliation:

1. Geotechnical Engineer, Ocean Graduate School, University of Western Australia, Perth, Australia (corresponding author: , )

2. Senior Lecturer, Department of Engineering, University of Cambridge, Cambridge, UK

3. Professor, Ocean Graduate School, University of Western Australia, Perth, Australia

4. Professor, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian, China

5. Professor, School of Engineering, University of Southampton, Southampton, UK

Abstract

Tolerably mobile subsea foundations may be used to replace conventional fixed mudmat foundations for pipeline infrastructure and are designed to slide on the seabed along with the connected pipeline, in order to accommodate thermally induced horizontal forces. This allows the size of the foundation and the resulting fabrication and installation costs to be substantially reduced. The performance of mobile foundations is explored in this paper through four centrifuge model tests on a normally consolidated or lightly over-consolidated reconstituted calcareous silt obtained from the Northwest Shelf of Western Australia. The results are compared to three existing tests performed on a kaolin clay. The results show that under typical periodic surface sliding and intervening rests, sliding resistance evolves within a cycle with resistance peaks evident at either end of the sliding footprint due to the formation of berms, and the residual resistance increasing with sliding cycles towards a drained state. Shear and consolidation-induced settlements accumulate with sliding cycles although at a reducing rate. The tests in the calcareous silt show higher normalised initial peak sliding resistance, a more dramatic loss and slower recovery of sliding resistance with cycles, and slower rate of decrease of incremental settlement compared with the response in kaolin clay.

Publisher

Thomas Telford Ltd.

Subject

Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editorial;International Journal of Physical Modelling in Geotechnics;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3