Pressure Drop in Rectangular Microchannels as Compared With Theory Based on Arbitrary Cross Section

Author:

Akbari Mohsen1,Sinton David2,Bahrami Majid31

Affiliation:

1. Mechatronic System Engineering, School of Engineering Science, Simon Fraser University, Surrey, BC, V3T 0A3, Canada

2. Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8W 2Y2, Canada

3. Mem. ASME

Abstract

Pressure driven liquid flow through rectangular cross-section microchannels is investigated experimentally. Polydimethylsiloxane microchannels are fabricated using soft lithography. Pressure drop data are used to characterize the friction factor over a range of aspect ratios from 0.13 to 0.76 and Reynolds number from 1 to 35 with distilled water as working fluid. Results are compared with the general model developed to predict the fully developed pressure drop in arbitrary cross-section microchannels. Using available theories, effects of different losses, such as developing region, minor flow contraction and expansion, and streaming potential on the measured pressure drop, are investigated. Experimental results compare well with the theory based on the presure drop in channels of arbitrary cross section.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3