Application of Carbon Nanotubes to Thermal Interface Materials

Author:

Fabris Drazen1,Rosshirt Michael1,Cardenas Christopher1,Wilhite Patrick2,Yamada Toshishige2,Yang Cary Y.3

Affiliation:

1. Department of Mechanical Engineering, Santa Clara University, Santa Clara Center for Nanostructures, Santa Clara University, Santa Clara, California 95053

2. Santa Clara Center for Nanostructures, Santa Clara University, Santa Clara, California 95053

3. Department of Electrical Engineering, Santa Clara University, Santa Clara Center for Nanostructures, Santa Clara University, Santa Clara, California 95053

Abstract

Improvements in thermal interface materials (TIMs) can enhance heat transfer in electronics packages and reduce high temperatures. TIMs are generally composed of highly conductive particle fillers and a matrix that allows for good surface wetting and compliance of the material during application. Two types of TIMs are tested based on the addition of carbon nanotubes (CNTs): one mixed with a commercial TIM product and the other only CNTs and silicone oil. The materials are tested using an in-house apparatus that allows for the simultaneous measurement of temperature, pressure, heat flux, and TIM thickness. Results show that addition of large quantities of CNTs degrades the performance of the commercial TIM, while the CNT-silicone oil mixtures showed improved performance at high pressures. Thickness and pressure measurements indicate that the CNT-thermal grease mixtures are more compliant, with a small increase in bulk thermal conductivity over the range of tested pressures.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference17 articles.

1. Performance and Testing of Thermal Interface Materials;Gwinn;Microelectron. J.

2. Optimization of Thermal Interface Materials for Electronics Cooling Applications;Singhal;IEEE Trans. Compon. Packag. Technol.

3. Thermal Interface Materials: Historical Perspective, Status, and Future Directions;Prasher;Proc. IEEE

4. Thermally Conductive Liquid Materials for Electronics Packaging;Misra

5. Modeling and Measurement of Pressure-Dependent Junction-Spreader Thermal Resistance for Integrated Circuits;Zhou;Proc. ASME, Heat Transfer Division, HTD

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3