Seeing Beyond the Line of Site – Controlling Connected Automated Vehicles

Author:

Orosz Gábor1,Ge Jin I.1,He Chaozhe R.1,Avedisov Sergei S.1,Qin Wubing B.1,Zhang Linjun1

Affiliation:

1. Department of Mechanical Engineering University of Michigan, Ann Arbor

Abstract

This article discusses past, present, and future research on connected automated vehicles and their impact on road transportation. From the 1980s, microcontrollers started to penetrate production vehicles through various subsystems such as engine control units, and anti-lock braking systems. Soon the need for different microcontrollers to communicate with each other led to the invention of the controller area network bus. In the 1990s, onboard sensors were introduced to monitor the environment and the motion of neighboring vehicles. These sensors, combined with more powerful computers, allowed vehicles to perform lateral and longitudinal control such as lane keeping and car following. Starting from the mid-2000s, wireless communication technologies such as WiFi and 4G/LTE have been adopted in order to facilitate vehicle-to-vehicle and vehicle-to-infrastructure communication. These are often referred to as vehicle-to-everything (V2X) communication, where X also includes pedestrians, bicyclists, etc. In particular, in the United States, dedicated short-range communication has been standardized based on IEEE 802.11p protocol, which allows low-latency, ad-hoc, and peer-to-peer communication with 10-Hz update frequency.

Publisher

ASME International

Subject

Mechanical Engineering

Reference31 articles.

1. PATH at 20-history and major milestones;IEEE Transactions on Intelligent Transportation Systems,2007

2. Autonomous driving in urban environments: approaches, lessons and challenges;Philosophical Transactions of the Royal Society A,1928

3. Cooperative vehicular safety applications;IEEE Control Systems Magazine,2010

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3