Impingement/Effusion Cooling Wall Heat Transfer: Reduced Number of Impingement Jet Holes Relative to the Effusion Holes

Author:

El-Jummah Abubakar M.1,Nazari Ahmad2,Andrews Gordon E.2,Staggs John E. J.2

Affiliation:

1. University of Maiduguri, Maiduguri, Nigeria

2. University of Leeds, Leeds, UK

Abstract

Internal wall heat transfer for impingement/effusion cooling was measured and predicted using conjugate heat transfer (CHT) computational fluid dynamics (CFD). The work was only concerned with the internal wall heat transfer and not with the effusion film cooling and there was no hot gas crossflow. Previous work had predicted impingement/effusion internal wall cooling with equal number of holes. The present work investigated a small number of impingement holes and a larger number of effusion holes. The aim was to see if the effusion holes acted as a suction surface to the impingement surface flow and thus enhanced the wall heat transfer. Hole ratios of 1/4, 1/9 and 1/25 were studied by varying the number of effusion holes for a fixed array of impingement holes and a fixed impingement gap, Z, of 8 mm. The Z/D for the impingement holes was 2.7. The impingement hole pitch, X, to diameter, D ratio X/D was 10.6 at a constant effusion hole X/D of 4.7 for all the configurations. The impingement holes were aligned on the midpoint of four effusion holes. The results were computed for a mass flux G from 0.1–0.94 kg/sm2bar for all n. This gave 26 separate CFD/CHT computations. Locally surface, X2, average heat transfer coefficient (HTC), hx, values were determined using the lumped capacitance method. Nimonic 75 metal walls with imbedded thermocouples were used to determine hx from the time constant in a transient cooling experiment following electrical heating to about 80°C. The CHT/CFD predictions showed good agreement with measured data and the highest number of effusion holes for the 1/25 hole ratio gave the highest h. However, comparison with the predicted and experimental results for equal number of impingement and effusion holes for the same Z, showed that there was little advantage of decreasing the number of impingement holes, apart from that of decreasing the Z/D significantly for the 1/15 hole ratio, which increased the heat transfer. The largest number of effusion holes had the highest heat transfer due to the greater internal surface area of the holes and their closer spacing. This was present irrespective of the number of impingement holes and there was no evidence of any benefit of the 25 effusion holes enhancing the single impingement jet heat transfer. For the lowest number of effusion hole there was predicted to be a small disadvantage of reducing the number of impingement jets.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3