A Novel Multi-Stage Impingement Cooling Scheme—Part II: Design Optimization

Author:

Liu Kexin1,Zhang Qiang23

Affiliation:

1. Siemens Industrial Turbomachinery Ltd, Waterside South, PO Box 1, Lincoln, LN5 7FD, UK

2. University of Michigan—Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China;

3. School of Mathematics, Computer Science and Engineering, City, University of London, London, EC1V 0HB, UK

Abstract

Abstract Cross flow and coolant maldistribution are the common design challenges for impingement cooling in modern gas turbine. This paper reports a novel multi-stage impingement cooling scheme for combustor liner. The design concept and general working mechanism are introduced in the Part I paper. This Part II paper presents the design flexibilities and optimization strategies. Conjugate heat transfer (CHT) analysis was conducted at a range of Reynolds numbers to assess the thermal performance, loss penalty, and the working mechanism behind. The results show that varying the jet hole diameter in each cooling stage can be an effective design optimization strategy in balancing the cooling requirement and loss penalty. Inter-stage bypass design is also another design flexibility offered by the multi-stage scheme to regulate the cooling air consumption at different stages. With these optimization strategies, the target surface temperature and local gradient can be effectively reduced with reasonable pressure loss with 50% reduction in the cooling air consumption compared to conventional single-stage impingement design. This multi-stage impingement concept can be practically applied to gas turbine combustor liner and turbine blade cooling.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3