Optimal Detuning of a Parallel Turning System—Theory and Experiments

Author:

Reith Marta J.1,Bachrathy Daniel2,Stepan Gabor3

Affiliation:

1. Department of Applied Mechanics, Budapest University of Technology and Economics, Budapest 1111, Hungary e-mail:

2. Assistant Professor Department of Applied Mechanics, Budapest University of Technology and Economics, Budapest 1111, Hungary e-mail:

3. Professor Department of Applied Mechanics, Budapest University of Technology and Economics, Budapest 1111, Hungary e-mail:

Abstract

Parallel turning is an excellent candidate for keeping up with current trends set by manufacturing industry, namely, to increase accuracy and productivity simultaneously. In the field of manufacturing of cylindrical parts, these cutting processes offer huge potential in increasing productivity, since they ensure high material removal rates and appropriate accuracy at the same time. The above benefits can yet only be harvested if the process is free of chatter vibration, which affects the workpiece surface quality. In this study, it is shown that by means of tuning the dynamical properties of cutting tools, it is possible to expand the stable machining parameter regions in order to eliminate adverse chatter. A parallel turning system is investigated, where tuning of the system is realized by varying the overhang of one of the tools, that is, by modulating the frequency ratio of the cutters. Measurements have been carried out for the validation of the theoretical predictions of robustly stable chip width limits, below which the turning operation is stable for all spindle speed values.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference27 articles.

1. Analytical Prediction of Stability Lobes in Milling;CIRP Ann. - Manuf. Technol.,1995

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3