Koopman Model Predictive Control of an Integrated Thermal Management System for Electric Vehicles

Author:

Pan Chao1,Li Yaoyu1

Affiliation:

1. Department of Mechanical Engineering, The University of Texas at Dallas , Richardson, TX 75080

Abstract

AbstractThis paper is concerned with energy efficient operation of an integral thermal management system (ITMS) for electric vehicles using a nonlinear model predictive control (MPC). Driven by a heat pump (HP), this ITMS can handle battery thermal management (BTM) while serving the need for cabin cooling or heating need. The objectives of the ITMS MPC control strategy include minimization of power consumption and achieving temperature setpoint regulation for the battery and cabin space based on predictive information of traction power and cabin thermal load. The control design is facilitated by a gray-box modeling framework, in which the nonlinear dynamics of HP subsystem are characterized with a data-driven Koopman subspace model, while the BTM subsystem dynamic is a bilinear physics-based model. The computational efficiency of the proposed MPC framework is improved with two aspects of convexification for the underlying receding-horizon constrained optimization problem: the Koopman-operator lifting and the McCormick envelopes implemented for handling the bilinear dynamics. The proposed control method is evaluated with simulation study, by developing a Modelica-Python cosimulation platform via the functional mockup interface (FMI), where the electric vehicle (EV)-ITMS plant is modeled in Modelica with Dymola and the MPC design is implemented in Python. By benchmarking against a recurrent-neural-networks (RNN) model based nonlinear MPC, the simulation results validate the effectiveness and improved computational efficiency of the proposed method.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference65 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3