Offset-Free Koopman Model Predictive Control of Thermal Comfort Regulation for a Variable Refrigerant Flow-Dedicated Outdoor Air System-Combined System

Author:

Pan Chao1,Li Yaoyu1,Dong Liujia2

Affiliation:

1. Department of Mechanical Engineering, University of Texas at Dallas, 800 W. Campbell Rd , Richardson, TX 75080

2. Carrier Global Corporation , 1203 Kinne St., East Syracuse, NY 13057

Abstract

Abstract Variable refrigerant flow (VRF) system has been an appealing solution of air conditioning for residential and commercial buildings, due to its flexibility and cost effectiveness, while lack of ventilation capability is a major drawback. Incorporation of dedicated outdoor air system (DOAS) is a typical practice. However, good coordination between DOAS and VRF is critical for achieving desired thermal comfort is challenging due to the possible complexity of mixed sensible and latent heat exchanges. In this paper, to handle the nonlinear dynamic characteristics of VRF-DOAS system, we propose an offset-free Koopman model predictive control (MPC) strategy for thermal comfort regulation, in which the MPC design is computationally more efficient due to the convex problem formulation and the use of reduced-order Koopman models, and the offset-free MPC structure enhances the robustness to model uncertainties and unmeasured disturbances. A control-oriented model is obtained by hybridizing the first-principle and data-driven modeling approach. The proposed controls strategy is evaluated with a Modelica simulation model of a VRF-DOAS system. A Dymola-Python cosimulation platform is developed via the functional mockup interface (FMI), for which the MPC algorithms are implemented in Python. Simulation results show significantly better performance of the offset-free Koopman MPC in thermal comfort regulation.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3