Affiliation:
1. Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK e-mail:
Abstract
Engine designers require accurate predictions of ingestion (or ingress) principally caused by circumferential pressure asymmetry in the mainstream annulus. Cooling air systems provide purge flow designed to limit metal temperatures and protect vulnerable components from the hot gases which would otherwise be entrained into disk cavities through clearances between rotating and static disks. Rim seals are fitted at the periphery of these disks to minimize purge. The mixing between the efflux of purge (or egress) and the mainstream gases near the hub end-wall results in a deterioration of aerodynamic performance. This paper presents experimental results using a turbine test rig with wheel-spaces upstream and downstream of a rotor disk. Ingress and egress was quantified using a CO2 concentration probe, with seeding injected into the upstream and downstream sealing flows. The probe measurements have identified an outer region in the wheel-space and confirmed the expected flow structure. For the first time, asymmetric variations of concentration have been shown to penetrate through the seal clearance and the outer portion of the wheel-space between the disks. For a given flow coefficient in the annulus, the concentration profiles were invariant with rotational Reynolds number. The measurements also reveal that the egress provides a film-cooling benefit on the vane and rotor platforms. Further, these measurements provide unprecedented insight into the flow interaction and provide quantitative data for computational fluid dynamics (CFD) validation, which should help to reduce the use of purge and improve engine efficiency.
Funder
Engineering and Physical Sciences Research Council
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献