Aerodynamics and Sealing Performance of the Downstream Hub Rim Seal in a High-Pressure Turbine Stage

Author:

Merli Filippo1,Krajnc Nicolas1,Hafizovic Asim1,Patinios Marios2,Göttlich Emil1

Affiliation:

1. Institute of Thermal Turbomachinery and Machine Dynamics, Graz University of Technology, Inffeldgasse 25A, 8010 Graz, Austria

2. GE Aviation, Freisinger Landstrasse 50, 85748 Garching bei München, Germany

Abstract

The purpose of the paper is to characterize the aerodynamic behavior of a rotor-downstream hub cavity rim seal in a high-pressure turbine (HPT) stage. The experimental data are acquired in the Transonic Test Turbine Facility at the Graz University of Technology: the test setup includes two engine-representative turbine stages (the last HPT stage and first LPT stage), with the intermediate turbine duct in between. All stator-rotor cavities are supplied with purge flows by a secondary air system, which simulates the bleeding air from the compressor stages of the real engine. The HPT downstream hub cavity is provided with wall taps and pitot tubes at different radial and circumferential locations, which allows the performance of steady pressure and seed gas concentration measurements for different purge mass flows and HPT vanes clocking positions. Moreover, miniaturized pressure transducers are adopted to evaluate the unsteady pressure distribution, and an oil flow visualization is performed to retrieve additional information on the wheel space structures. The annulus pressure asymmetry depends on the HPT vane clocking, but this is shown to have negligible impact on the minimum purge mass flow required to seal the cavity. However, the hub pressure profile drives the distribution of the cavity egress in the turbine channel. The unsteady pressure field is dominated by blade-synchronous oscillations. No non-synchronous components with comparable intensity are detected.

Funder

European Union’s Horizon 2020

Publisher

MDPI AG

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3