Numerical Studies of the Effects of Active and Passive Circulation Enhancement Concepts on Wind Turbine Performance

Author:

Tongchitpakdee Chanin12,Benjanirat Sarun12,Sankar Lakshmi N.2

Affiliation:

1. Mem. ASME

2. School of Aerospace Engineering, Georgia Institute of Technology, 270 Ferst Drive, Atlanta, GA 30332-0150

Abstract

The aerodynamic performance of a wind turbine rotor equipped with circulation enhancement technology (trailing-edge blowing or Gurney flaps) is investigated using a three-dimensional unsteady viscous flow analysis. The National Renewable Energy Laboratory Phase VI horizontal axis wind turbine is chosen as the baseline configuration. Experimental data for the baseline case is used to validate the flow solver, prior to its use in exploring these concepts. Calculations have been performed for axial and yawed flow at several wind conditions. Results presented include radial distribution of the normal and tangential forces, shaft torque, root flap moment, and surface pressure distributions at selected radial locations. At low wind speed (7m∕s) where the flow is fully attached, it is shown that a Coanda jet at the trailing edge of the rotor blade is effective at increasing circulation resulting in an increase of lift and the chordwise thrust force. This leads to an increased amount of net power generation compared to the baseline configuration for moderate blowing coefficients (Cμ⩽0.075). A passive Gurney flap was found to increase the bound circulation and produce increased power in a manner similar to Coanda jet. At high wind speed (15m∕s) where the flow is separated, both the Coanda jet and Gurney flap become ineffective. The effects of these two concepts on the root bending moments have also been studied.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3