A Computational Fluid Dynamics and Chemistry Model for Jet Fuel Thermal Stability

Author:

Krazinski J. L.1,Vanka S. P.2,Pearce J. A.3,Roquemore W. M.3

Affiliation:

1. Argonne National Laboratory, Argonne, IL 60439

2. University of Illinois at Urbana-Champaign, Urbana, IL 61801

3. Aero Propulsion and Power Laboratory, Wright-Patterson AFB, OH 45433

Abstract

This paper describes the development of a model for predicting the thermal decomposition rates of aviation fuels. A thermal deposition model was incorporated into FLANELS-2D, an existing computational fluid dynamics (CFD) code that solves the Reynolds-averaged conservation equations of mass, momentum, and energy. The decomposition chemistry is modeled by three global Arrhenius expressions in which the fuel decomposition was assumed to be due to an autoxidation reaction with dissolved oxygen. The deposition process was modeled by assuming that all deposit-forming species transported to the wall adhered and formed a deposit. Calibration of the model required the determination of the following parameters for a given fuel: (1) the pre-exponential constant and activation energy for the wall reaction, (2) the pre-exponential constant and activation energy for the bulk autoxidation reaction, and (3) the pre-exponential constant and activation energy for the precursor decomposition reaction. Values for these parameters were estimated using experimental data from published heated-tube experiments. Results show that the FLANELS-2D code performed well in estimating the fuel temperatures and that the three-equation chemistry model performed reasonably well in accounting for both the rate of deposition and the amount of dissolved oxygen present in the fuel at the end of the heated tube.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Considerations of the Aircraft Engine Fuel Pumping Systems and Fuel Management for the Next Generation;Proceedings of the Seventh International Conference on Liquid Atomization and Spray Systems;2023

2. Heat Transfer and Residence Time in Lean Direct Injection Fuel Galleries;Journal of Engineering for Gas Turbines and Power;2022-02-21

3. Heat transfer and thermal cracking behavior of hydrocarbon fuel;Fuel;2013-01

4. Modeling the Coke Formation in the Convection Section Tubes of a Steam Cracker;Industrial & Engineering Chemistry Research;2010-05-07

5. One-Dimensional Simulations of Jet Fuel Thermal-Oxidative Degradation and Deposit Formation Within Cylindrical Passages;Journal of Energy Resources Technology;2000-09-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3