One-Dimensional Simulations of Jet Fuel Thermal-Oxidative Degradation and Deposit Formation Within Cylindrical Passages

Author:

Ervin J. S.1,Zabarnick S.1,Williams T. F.1

Affiliation:

1. University of Dayton Research Institute, Dayton, OH 45469-0210

Abstract

Flowing aviation fuel is used as a coolant in military aircraft. Dissolved O2 reacts with the heated fuel to form undesirable surface deposits which disrupt the normal flow. For purposes of aircraft design, it is important to understand and predict jet fuel oxidation and the resulting surface deposition. Detailed multi-dimensional numerical simulations are useful in understanding interactions between the fluid dynamics and fuel chemistry. Unfortunately, the detailed simulation of an entire fuel system is impractical. One-dimensional and lumped parameter models of fluid dynamics and chemistry can provide the simultaneous simulation of all components which comprise a complex fuel system. In this work, a simplified one-dimensional model of jet fuel oxidation and surface deposition within cylindrical passages is developed. Both global and pseudo-detailed chemical kinetic mechanisms are used to model fuel oxidation, while a global chemistry model alone is used to model surface deposition. Dissolved O2 concentration profiles and surface deposition rates are calculated for nearly isothermal and nonisothermal flow conditions. Flowing experiments are performed using straight-run jet fuels, and the predicted dissolved O2 concentrations and surface deposition rates agree reasonably well with measurements over a wide range of temperature and flow conditions. The new model is computationally inexpensive and represents a practical alternative to detailed multi-dimensional calculations of the flow in cylindrical passages. [S0195-0738(00)01204-8]

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3