Experimental and Numerical Investigation of the Unsteady Leakage Flow Through the Rotor Tip Labyrinth of a 1.5-Stage Axial Turbine

Author:

Wolter K.1,Giboni A.2,Peters P.3,Menter J. R.4,Pfost H.4

Affiliation:

1. Uhde GmbH, Dortmund, Germany

2. Siemens AG Industrial Applications, Duisburg, Germany

3. Atlas Copco Energas GmbH, Cologne, Germany

4. Ruhr-Universita¨t Bochum, Bochum, Germany

Abstract

This paper presents the results of unsteady probe measurements and numerical flow calculations in a 1.5-stage low speed axial turbine with a straight labyrinth seal on a rotor shroud. The unsteady development of the leakage flow in the three cavities is described and analysed in detail. For the investigation of the leakage flow detailed time-accurate measurements of the three-dimensional flow field were carried out in five measurement planes from casing to the rotor shroud over more than one pitch. These measurements were carried out with a miniature pneumatic five-hole probe and miniature triple hot-wire probes. Both probes have a spherical head for better adjustment in flow direction. The high resolution of 330 measurement points in each of the five measurement planes represents the flow field in great detail. The unsteady experimental data was compared with the results of the unsteady numerical simulation of the turbine flow, calculated by the 3D-Navier-Stokes Solver CFX-TASCflow. The calculated data correspond well with the experimental results and allow a detailed analysis of the flow in the cavities of the labyrinth. As demonstrated in this paper the investigations show that the leakage flow at the inlet ant outlet of the labyrinth is strongly influenced by the different positions of the rotor to the stator. The unsteady experimental and numerical data indicates intensive effects of the leakage flow caused and influenced by the trailing edge of the first stator and the potential effect of the rotor leading edge. An intensive vortex develops depending on the rotor position in the first cavity. This vortex is also influenced by a small corner vortex above the axial inlet gap of the labyrinth. After the fins this unsteady influence of the leakage flow decreases and below the jet a large vortex moves in circumferential direction. The intensity of this circulation vortex is reduced at the end of the last cavity due to the interaction with the main flow and the flow direction out of the labyrinth. Therefore the unsteady behaviour of the leakage flow grows up, which is also caused by its uneven entry into the main flow.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3