Experimental Response of a Rotor Supported on Rayleigh Step Gas Bearings

Author:

Zhu Xuehua1,San Andre´s Luis2

Affiliation:

1. SKF China, Ltd., Shanghai, China

2. Texas A&M University, College Station, TX

Abstract

Reliable gas bearings will enable the rapid deployment of high speed oil-free micro-turbomachinery. This paper presents analysis and experiments of the dynamic performance of a small rotor supported on Rayleigh step gas bearings. Comprehensive tests demonstrate that Rayleigh step hybrid gas bearings exhibit adequate stiffness and damping capability in a narrow range of shaft speeds, up to ∼ 20 krpm. Rotor coast down responses were performed with two test bearing sets with nominal radial clearance of 25 μm and 38 μm. A near-frictionless carbon (NFC) coating was applied on the rotor to reduce friction at liftoff and touchdown. However, the rotor could not lift easily and severe rubbing occurred at shaft speeds below ∼ 4,000 rpm. The tests show that the supply pressure raises the rotor critical speed and decreases the system damping ratio, while only affecting slightly the rotor-bearing system onset speed of instability. Whirl frequencies are nearly fixed at the system natural frequency (∼ 120 Hz) with subsynchronous amplitude motions of very large magnitude that prevented rotor operation above ∼ 20 krpm. The geometry of the Rayleigh steps distributed on the rotor surface generates a time varying pressure field, resulting in a sizable 4X super synchronous component of bearing transmitted load. Predictions show the synchronous stiffness and damping coefficients decrease with shaft speed. Predicted threshold speeds of instability are much lower than measured values due to the analytical model limitations assuming a grooved stator. The predicted synchronous responses to imbalance correlate well with the measurements. The Rayleigh step gas bearings are the most unreliable rigid bearing configuration tested to date.

Publisher

ASMEDC

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3