Experimental Analysis of the Dynamic Characteristics of a Hybrid Aerostatic Bearing

Author:

Rudloff Laurent1,Arghir Mihai1,Bonneau Olivier1,Guingo Sébastien2,Chemla Guillaume2,Renard Emelyne3

Affiliation:

1. Institut PPRIME, CNRS UPR3346 Université de Poitiers, France

2. SNECMA Space Engine Division Vernon, France

3. Centre National d’Etudes Spatiales Evry, France

Abstract

The dynamic characteristics of a hybrid aerostatic bearing are experimentally investigated on a test rig consisting of a rigid rotor driven by an impulse turbine. The rotor is horizontally mounted and is supported by two identical aerostatic bearings. Both the impulse turbine and the aerostatic hybrid bearings are fed with air. The feeding pressures in the bearings can be as high as 7 bars and rotation speeds can reach 60 krpm so the dynamic load on the rotor is much larger than the static load engendered by its weight. Excitations are applied either via an impact hammer or via unbalancing masses. The measuring instruments record the bearing feeding pressures, the rotation speed, the impact force, the displacements of the two bearings, and the bearing housing accelerations. The experimental data together with the equations of motion of the rotor enables the identification of the dynamic coefficients of the bearings. A second identification procedure using the same impact hammer is also possible as force transducers are mounted between the bearing housing and its support. The dynamic coefficients of the bearings can then be obtained from the equation of motion of its housing. Unbalance response provide a convenient way for verifying the accuracy of the identified dynamic coefficients. Therefore these coefficients are injected in the equations of motion of a four degrees of freedom rigid rotor and the theoretical results are compared with values measured on the test rig. Comparisons show that predictions are acceptable but become less accurate at high rotation speeds where large dynamic forces are needed for exciting the corresponding synchronous frequencies.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference15 articles.

1. Diaz, S., Beets, T., Dunn, G., and San Andrés, L., 1999, “High Speed Test Rig for Identification of Gas Journal Bearing Performance: Design, Constraints and Fabrication,” TRC-RD-1-99.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3