Film Cooling From a Row of Holes Embedded in Transverse Slots

Author:

Lu Yiping1,Nasir Hasan1,Ekkad Srinath V.1

Affiliation:

1. Louisiana State University, Baton Rouge, LA

Abstract

Film cooling performance for a row of cylindrical holes can be enhanced by embedding the row in transverse slots. The geometry of the transverse slot greatly affects the cooling performance downstream of injection. The effect of the slot exit area and edge shape is investigated. Detailed heat transfer coefficient and film effectiveness measurements are obtained simultaneously using a single test transient IR thermography technique. The study is performed at a single mainstream Reynolds number based on free-stream velocity and film hole diameter of 7150 at three different coolant-to-mainstream blowing ratios of 0.5, 1.0, and 1.5. The results show that the film cooling holes provide higher film effectiveness when embedded in a slot. However, in some geometries when the slot begins at the upstream edge of the hole, the film effectiveness diminishes. The heat transfer coefficient enhancement due to the embedding is not significantly higher compared to the typical unembedded cylindrical hole. The overall heat flux ratio comparing film cooling with embedded holes to unembedded holes shows that the full slot and downstream slot spacing after the hole exit produce the highest heat flux reduction. The holes-in-slot geometry is certainly very promising.

Publisher

ASMEDC

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3