Affiliation:
1. Department of Mechanical Engineering, Columbia University, New York, N. Y.
2. Department of Civil Engineering, Yale University, New Haven, Conn.
Abstract
Abstract
General equations for the computation of stress rates in solid and hollow cylinders subjected to transient temperature distributions are developed, based on the assumptions of an elastic, perfectly plastic material obeying the Tresca yield condition with Poisson ratio of one half. For most temperature distributions, it appears that these equations can be integrated only by numerical means. However, for one particular temperature distribution, equivalent to a phase transformation which occurs at a fixed temperature, it is found possible to integrate them analytically, and expressions for the transient and residual stresses are obtained in closed form. The latter results are compared with experiment and qualitative agreement noted.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献