The influence of quenchant agitation on the heat transfer coefficient and residual stress development in the quenching of steels

Author:

Sedighi M1,McMahon C A1

Affiliation:

1. University of Bristol Department of Mechanical Engineering UK

Abstract

This paper is concerned with the effect of variation in part orientation and quenchant circulation and agitation on the heat transfer coefficient during the quenching of steel parts, and subsequently on the development of residual stresses in the quenched part. Residual stresses arise from complex coupled interactions between phase transformation, thermal and stress effects during the rapid thermal transient of quenching. The nature of these interactions is described briefly, and their incorporation into an analytical programme using finite element analysis is outlined. In an experimental programme the effect of quenchant flow velocity was investigated for flow parallel and perpendicular to the axis of cylindrical bar specimens. Heat transfer coefficients were obtained from thermocouples embedded in the specimens, using the inverse method to process the results. Results are presented for varying positions on the bars, as well as for variation in orientation and flow velocity. Axial residual stresses are presented for two flow conditions at each orientation and are compared with experimental measurements made using the X-ray diffraction technique.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3