Study of Cooling Medium Variables during Quenching in SAE 4340 Steel Using Statistical and Modeling Tools

Author:

Puga-Patlán Carlos1,Lopez-Garcia Ricardo Daniel2,Medina-Juárez Israel1ORCID,Maldonado-Reyes Araceli2,Reyes-Gallegos María Magdalena1

Affiliation:

1. Postgraduate and Research Department, Tecnológico Nacional de México/Campus Cd. Victoria, Blvd. Emilio Portes Gil No. 1301 Pte., Cd. Victoria C.P. 87010, Tamaulipas, Mexico

2. Department of Mechanical Engineering, Tecnológico Nacional de México/Campus Cd. Victoria, Blvd. Emilio Portes Gil No. 1301 Pte., Cd. Victoria C.P. 87010, Tamaulipas, Mexico

Abstract

Although quenching is one of the most widely used heat treatments in the metal-mechanical industry to improve the mechanical properties of steels, it is also responsible for the generation of residual stress, distortion, and fractures in the treated parts. The high-temperature gradients present during quenching and martensitic transformation are the main failure mechanisms. Cooling is the critical quenching stage where several variables that need to be controlled are involved in reducing these problems. The objective of this research was to evaluate the main variables in the quenching process in SAE 4340 steels, which promote distortion, residual stress accumulation, and fracture failures. A 2ᴷ factorial experiment was designed, samples with C-ring geometry susceptible to changes in quenching variables were used, and the variables studied were the agitation and temperature of the quenching medium. Experimental measurements, statistical tools and modeling were used to evaluate and predict the distortion generated in quenched samples. Such tools include Minitab 21® software and its statistics utilities. Furthermore, a finite element method model was carried out using STFC Deform®. The results suggest that there are optimal conditions in the quenching process to minimize distortion and residual stresses and to improve mechanical properties of quenched parts; therefore, the methods used in this work could be useful to detect and control the appearance of defects in an industrial environment.

Funder

Tecnológico Nacional de México

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3