Comparison of the Hemodynamic and Thrombogenic Performance of Two Bileaflet Mechanical Heart Valves Using a CFD/FSI Model

Author:

Dumont Kris1,Vierendeels Jan2,Kaminsky Rado3,van Nooten Guido4,Verdonck Pascal3,Bluestein Danny5

Affiliation:

1. Cardiovascular Mechanics and Biofluid Dynamics Research Unit, IBiTech, Ghent University, Belgium; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-8181

2. Department of Flow, Heat, and Combustion Mechanics, Ghent University, Belgium

3. Cardiovascular Mechanics and Biofluid Dynamics Research Unit, IBiTech, Ghent University, Belgium

4. Department of Surgery, University Hospital Ghent, Belgium

5. Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-8181

Abstract

The hemodynamic and the thrombogenic performance of two commercially available bileaflet mechanical heart valves (MHVs)—the ATS Open Pivot Valve (ATS) and the St. Jude Regent Valve (SJM), was compared using a state of the art computational fluid dynamics-fluid structure interaction (CFD-FSI) methodology. A transient simulation of the ATS and SJM valves was conducted in a three-dimensional model geometry of a straight conduit with sudden expansion distal the valves, including the valve housing and detailed hinge geometry. An aortic flow waveform (60 beats/min, cardiac output 4 l∕min) was applied at the inlet. The FSI formulation utilized a fully implicit coupling procedure using a separate solver for the fluid problem (FLUENT) and for the structural problem. Valve leaflet excursion and pressure differences were calculated, as well as shear stress on the leaflets and accumulated shear stress on particles released during both forward and backward flow phases through the open and closed valve, respectively. In contrast to the SJM, the ATS valve opened to less than maximal opening angle. Nevertheless, maximal and mean pressure gradients and velocity patterns through the valve orifices were comparable. Platelet stress accumulation during forward flow indicated that no platelets experienced a stress accumulation higher than 35 dyne×s/cm2, the threshold for platelet activation (Hellums criterion). However, during the regurgitation flow phase, 0.81% of the platelets in the SJM valve experienced a stress accumulation higher than 35 dyne×s/cm2, compared with 0.63% for the ATS valve. The numerical results indicate that the designs of the ATS and SJM valves, which differ mostly in their hinge mechanism, lead to different potential for platelet activation, especially during the regurgitation phase. This numerical methodology can be used to assess the effects of design parameters on the flow induced thrombogenic potential of blood recirculating devices.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3