Assessment of valve implantation in the descending aorta as an alternative for aortic regurgitation patients not treatable with conventional procedures

Author:

García-Galindo A.,Agujetas R.,López-Mínguez J. R.,Ferrera C.

Abstract

Abstract Background: Aortic Regurgitation (AR) produces the entrance of an abnormal amount of blood in the left ventricle. This disease is responsible for high morbidity and mortality worldwide and may be caused by an aortic valve dysfunction. Surgical and transcatheter aortic valve replacement (TAVR) are the current options for treating AR. They have replaced older procedures such as Hufnagel’s one. However, some physicians have reconsidered this procedure as a less aggressive alternative for patients not eligible for surgical or TAVR. Although Hufnagel suggested a 75% regurgitation reduction when a valve is placed in the descending aorta, a quantification of this value has not been reported. Methods: In this paper, CFD/FSI numerical simulation is conducted on an idealized geometry. We quantify the effect of placing a bileaflet mechanical heart valve in the descending aorta on a moderate-severe AR case. A three-element Windkessel model is employed to prescribe pressure outlet boundary conditions. We calculate the resulting flow rates and pressures at the aorta and first-generation vessels. Moreover, we evaluate several indices to assess the improvement due to the valve introduction. Results and conclusions: Regurgitation fraction (RF) is reduced from 37.5% (without valve) to 18.0% (with valve) in a single cardiac cycle. This reduction clearly shows the remarkable efficacy of the rescued technique. It will further ameliorate the left ventricle function in the long-term. Moreover, the calculations show that the implantation in that location introduces fewer incompatibilities’ risks than a conventional one. The proposed methodology can be extended to any particular conditions (pressure waveforms/geometry) and is designed to assess usual clinical parameters employed by physicians.

Funder

Universidad de Extremadura

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Modeling and Simulation,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3