Numerical Prediction of Surface Wear and Roughness Parameters During Running-In for Line Contacts Under Mixed Lubrication

Author:

Zhang Yazhao1,Kovalev Alexander1,Hayashi Noriyuki2,Nishiura Kensuke3,Meng Yonggang1

Affiliation:

1. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China e-mail:

2. Machinery Research Department, Research & Innovation Center, Mitsubishi Heavy Industries Ltd., 5-717-1, Fukahori-machi, Nagasaki 851-0392, Japan

3. Machinery Research Department, Research & Innovation Center, Mitsubishi Heavy Industries Ltd., 5-717-1, Fukahori-machi, Nagasaki 851-0392, Japan

Abstract

A stochastic model for predicting the evolutions of wear profile and surface height probability density function (PDF) of initial line contacts during running-in under mixed lubrication condition is presented. A numerical approach was developed on the basis of stochastic solution of mixed lubrication, which combined the Patir and Cheng's average flow model for calculation of the hydrodynamic pressure and the Kogut and Etsion's (KE) rough surface contact model for calculation of the asperity contact pressure. The total friction force was assumed to be the sum of the boundary friction at the contact asperities and the integration of viscous shear stress in the hydrodynamic region. The wear depth on the contact region was estimated according to the modified Archard's wear model using the asperity contact pressure. Sugimura's wear model was modified and used to link the wear particle size distribution and the variation of surface height PDF during wear. In the wear process, the variations of profile and surface height PDF of initial line contacts were calculated step by step in time, and the pressure distribution, friction coefficient, and wear rate were updated consequently. The effect of size distribution of wear particles on the wear process was numerically investigated, and the simulation results showed that the lubrication condition in which small wear particles are generated from the asperity contact region is beneficial to reduce friction coefficient and wear rate, and leads to a better steady mixed lubrication condition.

Funder

National Natural Science Foundation of China

State Administration of Foreign Experts Affairs

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3