Affiliation:
1. Brno University of Technology, Brno, Czech Republic
Abstract
Condensation during heat transfer processes can be very beneficially used due to the large amount of energy contained in phase change (vapor to liquid). This contribution focuses on the possible use of polymer hollow fiber heat exchangers (PHFHEs) in air conditioning. PHFHEs consist of hundreds or thousands of polymer hollow fibers with an outer diameter of around 1 mm. The wall thickness is approximately 10% of the outer diameter. PHFHEs are heat exchangers with such benefits as low weight, easy shaping, corrosion resistance, and resistance to many chemical solutions. In comparison with metal heat exchangers (made of copper, aluminum, or stainless steel) the plastic wall of PHFHEs has low thermal conductivity (between 0.1 and 0.4 Wm-1K-1). This seems to be their key disadvantage. However, due to the extremely small thickness of the fiber’s wall this disadvantage is negligible. PHFHEs are compact heat exchangers with a large heat transfer area with respect to their volume.
This paper shows the results of condensation tests for PHFHEs that consist of 6 equivalent layers of polypropylene fibers with a length of 190 mm. The total number of fibers is 798. The air humidity was set to 50% with an air temperature of 27°C, which are the typical conditions for such tests in air conditioning technology. Another important parameter was the velocity of the air. Testing velocities were chosen as 3 m s−1 and 1 m s−1.
The influence of gravity was studied by putting the PHFHEs in three different positions. The fibers were placed in horizontal and vertical positions, and in a position where fibers form an angle of 45° with the ground.
The study showed the ineffectiveness of placing the PHFHE in a horizontal position and suggests that it is better to have a larger distance between the layers of fibers.
Publisher
American Society of Mechanical Engineers
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献