Abstract
AbstractIn various applications, a polymeric hollow fiber heat exchanger (PHFHE) is a competitive alternative to a conventional heat exchanger (HE). Standard empirical models for predicting the crossflow tube HE characteristics are defined for devices with rigid tubes with relatively large diameters compared to the polymeric hollow fibers with an outer diameter of around 1 mm. This study examines the impact of tension force on airside heat transfer rate and pressure drop in a crossflow PHFHE. The tension force influences the stiffness of the flexible polymeric fibers and their response to applied airflow. Two liquid–gas PHFHEs were designed and manufactured to ensure uniformity of the fibers' arrangement (inline and staggered). An experimental stand enabling the application of defined tension force in the range of 0–9000 N was designed, manufactured and placed into the calorimetric tunnel, where heat transfer rate and pressure drop measurement were performed with varying air velocity between 2 and 8 ms−1 (corresponding to Reynolds number of 240–970). Among our key findings was that the elongation of the fibers due to thermal expansion or stress relaxation has a considerable impact on the fibers' arrangement and resulting fluid flow. Moreover, the application of tension force yielded no substantial change in air pressure drop; however, it led to a notable enhancement in heat transfer rate. Specifically, under a maximal tension force of 9000 N, the heat transfer rate increased by around 11% compared to the unloaded state.
Funder
Ministerstvo Školství, Mládeže a Tělovýchovy
Vysoké Učení Technické v Brně
Brno University of Technology
Publisher
Springer Science and Business Media LLC