Numerical Investigation of Nanoparticles Shape Impacts on Thermal Energy Transfer and Flow Features of Nanofluid Impingement Jets

Author:

Shirvani Behrang Asghari1,Sodagar Javad2,Eynijengheshlaghi Farshid3,Arabkoohsar Ahmad4

Affiliation:

1. School of Mechanical Engineering, College of Engineering, University of Tehran, 13145-1384 Tehran, Iran

2. Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrud, Iran

3. School of Mechanical Engineering, Iran University of Science and Technology, 16846-13114 Tehran, Iran

4. Department of Energy Technology, Aalborg University, Aalborg 6700, Denmark

Abstract

Abstract Today, energy transfer enhancement techniques have received much attention for design and manufacturing more efficient systems in various industries such as automotive, computers, electronics, and so forth. One way to achieve high-efficiency cooling systems is to use impingement jet cooling. In the present study, a numerical study has been conducted on nanofluid impingement jet in the vertical position to investigate the fluid flow characteristics and thermal energy transfer features. The working fluid in this study is a nanofluid with water–ethylene glycol mixture as base fluid and nanoparticles of boehmite alumina. The flow is considered to be laminar, steady-state, two-dimensional, symmetrically axial, for which the finite volume method is used to solve the equations. The effect of the Reynolds number variations, the volume fraction of nanoparticle, and different nanoparticle shapes (including spherical, plate, blade, cylindrical, and brick shapes) on thermophysical features of the flow are studied. The results reveal that the increasing Reynolds number and the increasing volume fraction of nanoparticles improves the thermal energy transfer rate. The highest Nusselt number leads to a maximum of energy transfer related to nanofluids with platelet and cylindrical nanoparticles, while the lowest thermal energy transfer rate is related to nanofluids containing spherical nanoparticles. Moreover, it is illustrated that nanofluids with platelets nanoparticles, because of their higher effective viscosity compares to other nanofluids, experience the highest pressure drop and those of with spherical nanoparticles show the lowest pressure drop.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3