Numerical Investigation of Turbulent Slot Jets with Various Nanoparticles Shapes

Author:

Boudraa Bouziane1,Bessaïh Rachid1

Affiliation:

1. LEAP Laboratory, Department of Mechanical Engineering, University of Mentouri Brothers, Constantine, Algeria

Abstract

In this work, a numerical investigation related to the turbulent forced convection of a water-Al2O3 nanofluid in slot jets impinging on multiple hot components fixed on the lower wall, using different nanoparticle shapes (spherical, blades, bricks, cylindrical and platelets), was carried out. The standard k-ε turbulence model with wall enhanced treatment and two-phase mixture model were used to analyze the fluid flow and heat transfer. The outcomes revealed that the increase in the Reynolds number (Re) and volume fraction of nanoparticles (φ) with all nanoparticle shapes enhanced the heat transfer rate. The platelets nanoparticle's shape significantly contributes to increasing the heat transfer rate compared with other forms. Also, we have found that the two-phase mixture model gives a higher average Nusselt number (Nu) values compared to the single-phase model, and the maximum values of (Nu)&nbsp;is located around the last block due to the second jet's dominance (J2) compared to the first jet (J1). We have compared our results with those found in the literature.<br>

Publisher

BENTHAM SCIENCE PUBLISHERS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3