Prediction of the Turbine Tip Convective Heat Flux Using Discrete Green's Functions

Author:

Andreoli Valeria1,Cuadrado David G.1,Paniagua Guillermo1

Affiliation:

1. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 e-mail:

Abstract

The heat fluxes across the turbine tip gap are characterized by large unsteady pressure gradients and shear from the viscous effects. The classical Newton heat convection equation, based on the turbine inlet total temperature, is inadequate. Previous research from our team relied on the use of the adiabatic wall temperature. In this paper, we propose an alternative approach to predict the convective heat transfer problem across the turbine rotor tip using discrete Green's functions (DGF). The linearity of the energy equation in the solid domain with constant thermal properties can be applied with a superposition technique to measure the data extracted from flow simulations to determine the Green's function distribution. The DGF is a matrix of coefficients that relate the temperature spatial (GF) distribution with the heat flux. This methodology is first applied to a backward facing step, validated using experimental data. The final aim of this paper is to demonstrate the method in the rotor turbine tip. A turbine stage at engine-like conditions was assessed using cfd software. The heat flux pulses were applied at different locations in the rotor tip geometry, and the increment of temperature in this zone was evaluated for different clearances, with a consequent variation of the DGF coefficients. Ultimately, a detailed uncertainty analysis of the methodology was included based on the magnitude of the heat flux pulses used in the DGF coefficients calculation and the uncertainty in the experimental measurements of the wall temperature.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3