Affiliation:
1. State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an, Shaanxi 710049, China
Abstract
Abstract
A transient chemomechanical coupling formulation for solid continuum is presented. The second-order rate and the characterized time are introduced to include the transient effect through Taylor expansion. The transient Reynold’s transport theorem is derived with the new products or material elimination considered. Based on conservation laws and the second law of thermodynamic, we state a consistent Helmholtz-energy-based framework. The transient field equations take mechanical and chemical contributions and microscopic time into account. Either microscopic time or chemical reactions leads to the unsymmetry of the stress tensor. The relationship of Helmholtz energy and constitutive properties, the evolution equations, and the entropy are consistent with the classical continuum thermodynamics and the constitutive theory in continuum mechanics. Further, the transient equations of thermal conduction and diffusion with finite velocity are naturally derived rather than postulated, and a comparison with the existing theories is discussed.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献