Prognostics of Machine Condition Using Energy Based Monitoring Index and Computational Intelligence

Author:

Samanta B.12,Nataraj C.12

Affiliation:

1. Mem. ASME

2. Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085

Abstract

A study is presented on applications of computational intelligence (CI) techniques for monitoring and prognostics of machinery conditions. The machine condition is assessed through an energy-based feature, termed as “energy index,” extracted from the vibration signals. The progression of the “monitoring index” is predicted using the CI techniques, namely, recursive neural network (RNN), adaptive neurofuzzy inference system (ANFIS), and support vector regression (SVR). The proposed procedures have been evaluated through benchmark data sets for one-step-ahead prediction. The prognostic effectiveness of the techniques has been illustrated through vibration data set of a helicopter drivetrain system gearbox. The prediction performance of SVR was better than RNN and ANFIS. The improved performance of SVR can be attributed to its inherently better generalization capability. The training time of SVR was substantially higher than RNN and ANFIS. The results are helpful in understanding the relationship of machine conditions, the corresponding indicating feature, the level of damage or degradation, and their progression.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3