Physics-Informed Neural Networks for Missing Physics Estimation in Cumulative Damage Models: A Case Study in Corrosion Fatigue

Author:

Dourado Arinan1,Viana Felipe A. C.1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816

Abstract

AbstractWe present a physics-informed neural network modeling approach for missing physics estimation in cumulative damage models. This hybrid approach is designed to merge physics-informed and data-driven layers within deep neural networks. The result is a cumulative damage model in which physics-informed layers are used to model relatively well understood phenomena and data-driven layers account for hard-to-model physics. A numerical experiment is used to present the main features of the proposed framework. The test problem consists of predicting corrosion-fatigue of an Al 2024-T3 alloy used on panels of aircraft wings. Besides cyclic loading, panels are also subjected to saline corrosion. In this case, physics-informed layers implement the well-known Walker model for crack propagation, while data-driven layers are trained to compensate the bias in damage accumulation due to the corrosion effects. The physics-informed neural network is trained using full observation of inputs (far-field loads, stress ratio, and a corrosivity index defined per airport) and very limited observation of outputs (crack length at inspection for only a small portion of the fleet). Results show that the physics-informed neural network is able to learn how to compensate the missing physics of corrosion in the original fatigue model. Predictions from the hybrid model can be used in fleet management, for example, to prioritize inspection across the fleet or forecast ahead of time the number of planes with damage above a threshold.

Funder

University of Central Florida

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3