Natural Convection From Horizontal Cylinders at Near-Critical Pressures—Part I: Experimental Study

Author:

Rousselet Yohann,Warrier Gopinath R.1,Dhir Vijay K.2

Affiliation:

1. e-mail:

2. Henry Samueli School of Engineering and Applied Science, Mechanical and Aerospace Engineering Department, University of California, Los Angeles, Los Angeles, CA 90095

Abstract

An experimental study of free convection heat transfer from horizontal wires to carbon dioxide at near-critical pressures has been performed. In the experiments, platinum wires ranging in size from 25.4 μm to 100 μm and a nichrome 60/20 wire of 101.6 μm diameter were used. The pressure (P) and bulk temperature (Tb) of the fluid were varied in the range: 6.34 MPa ≤ P ≤ 9.60 MPa and 10 °C ≤ Tb ≤ 33.3 °C, respectively. The wall temperature (Tw) was systematically increased from Tb + 0.1 °C to 250 °C. Visual observations of the fluid flow were made using a high speed camera. The similarity between natural convection heat transfer at Tw < Tsat (for P < Pc) and Tw < Tpc (for P > Pc), as well as the similarity between film boiling at Tw > Tsat (for P < Pc) and natural convection heat transfer at Tw > Tpc (for P > Pc), was demonstrated. The dependence of the heat transfer coefficient on the wire diameter was found to be h ∝ D−0.5, for both P < Pc and P > Pc. The bulk fluid temperature is introduced as a new reference temperature for the calculation of fluid properties. Correlations have been developed to predict the natural convection heat transfer coefficient at both subcritical and supercritical pressures. The developed correlations predict almost all the experimental data from the current study and those reported in the literature to within ±15%.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3