Numerical simulation of fluid-structure coupled heat transfer characteristics of supercritical CO<sub>2</sub> pool heat transfer

Author:

Yu Bo-Wen,He Xiao-Tian,Xu Jin-Liang, ,

Abstract

The heat transfer of supercritical pseudo-boiling has been preliminarily studied, but the definition of gas-liquid interface is still not unified. The fluid-structure coupling numerical simulation of heat transfer characteristics in supercritical CO<sub>2</sub> pool is carried out by using laminar flow model. Platinum wire is the heating element, with diameter <i>d</i> = 70 μm. The heat flux density <i>q</i><sub>w</sub> is in a range of 0–2000 kW/m<sup>2</sup>, and the pressure <i>P</i> is in a range of 8–10 MPa. Multi-scale mesh is used to model the heating wire, and simulation values accord well with the experimental data. The results show that due to the increase of the circumferential average Rayleigh number <i>Ra</i><sub>ave</sub> of the heating filament with <i>q</i><sub>w</sub>, the characteristic of the natural convection zone is that <i>h</i> increases with <i>q</i><sub>w</sub>. The temperatures of the four characteristic working conditions in the evaporation-like zone show a downward trend along the <i>r</i> direction. Through analogy with subcritical heat transfer and by calculating the thermal conductivity ratio <i>Q</i><sub>con</sub>/<i>Q</i><sub>t</sub>, the supercritical is divided into three regions, <i>T</i> < <i>T</i><sub>L</sub> is liquid-like region (LL), <i>T</i><sub>L</sub> < <i>T</i> < <i>T</i><sub>M</sub> is two-phase-like region (TPL), <i>T</i> > <i>T</i><sub>M</sub> is vapor-like region (VL). The rule is the same as that of <i>x</i> partition according to supercritical pseudo-boiling dryness. According to the curves of average thermal conductivity <i>λ</i><sub>ave</sub> and thermal resistance <i>R</i><sub>G</sub> versus heat flux <i>q</i><sub>w</sub>, determined by calculating thermal conductivity ratio, the variation law of heat transfer coefficient <i>h</i> with <i>q</i><sub>w</sub> in evaporation-like region can be well explained, as <i>q</i><sub>w</sub> increases, the thermal conductivity thermal resistance <i>R</i><sub>G</sub> increases, and the heat from the heating filament is difficult to transfer to the fluid outside the vapor-like membrane, leading the heat transfer coefficient <i>h</i> to decrease when <i>q</i><sub>A</sub> < <i>q</i><sub>w</sub> < <i>q</i><sub>C</sub>, and a significant increase in <i>λ</i><sub>ave</sub> when <i>q</i><sub>w</sub> > <i>q</i><sub>C</sub>, and the recovery of heat transfer when <i>h</i> rises again. In this paper, a new method of determining the gas-liquid interface of supercritical pool heat transfer is proposed. This method can effectively explain the heat transfer mechanism in the evaporation-like zone, and provide a theoretical basis for developing supercritical pool heat transfer in the future.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3