Natural Convection From Horizontal Cylinders at Near-Critical Pressures—Part II: Numerical Simulations

Author:

Warrier Gopinath R.1,Rousselet Yohann,Dhir Vijay K.2

Affiliation:

1. e-mail:

2. Henry Samueli School of Engineering and Applied Science, Mechanical and Aerospace Engineering Department, University of California, Los Angeles, Los Angeles, CA 90095

Abstract

A numerical investigation of laminar natural convection heat transfer from small horizontal cylinders at near-critical pressures has been carried out. Carbon dioxide is the test fluid. The parameters varied are: pressure (P), (ii) bulk fluid temperature (Tb), (iii) wall temperature (Tw), and (iv) wire diameter (D). The results of the numerical simulations agree reasonably well with available experimental data. The results obtained are as follows: (i) At both subcritical and supercritical pressures, h is strongly dependent on Tb and Tw. (ii) For Tw < Tsat (for P < Pc) and Tw < Tpc (for P > Pc), the behavior of h as a function of Tw is similar; h increases with increase in Tw. (iii) For P > Pc and large Tw (Tw > Tpc), natural convection heat transfer occurring on the cylinder is similar that observed during film boiling on a cylinder. The heat transfer coefficient decreases as Tw increases. (iv) For subcritical pressures, the dependence of h on D is h ∝ D−0.5 in the range 25.4 ≤ D ≤ 100 μm. For larger values of D (500–5000 μm), h ∝ D−0.24. (v) For supercritical pressures, the dependence of h on D is h ∝ D−0.47 in the range 25.4 ≤ D ≤ 100 μm. For larger values of D (500–5000 μm), h ∝ D−0.27. (vi) For a given P, the maximum heat transfer coefficient is obtained for conditions where Tb < Tpc and Tw ≥ Tpc. Analysis of the temperature and flow field shows that this peak in h occurs when k, Cp, and Pr in the fluid peak close to the heated surface.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference28 articles.

1. Natural Convection in the Near Critical Region and Its Application in Heat Pipes,,1985

2. Laminar Free Convection in Carbon Dioxide Near Its Critical Point;Int. J. Heat Mass Transfer,1963

3. Free Convection Heat Transfer to Carbon Dioxide Near the Critical Point;Int. J. Heat Mass Transfer,1966

4. Film Boiling and Free Convection Heat Transfer to Carbon Dioxide Near the Critical State;Int. J. Heat Mass Transfer,1970

5. Free Convective Heat Transfer to Supercritical Carbon Dioxide;Int. J. Heat Mass Transfer,1980

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3