Numerical Modeling of Powder Gas Interaction Relative to Laser Powder Bed Fusion Process

Author:

Li Xuxiao1,Tan Wenda1

Affiliation:

1. Department of Mechanical Engineering, University of Utah, Utah, UT 84112

Abstract

Abstract The powder motion induced by the gas flow has been identified as one of the critical phenomena in laser powder bed fusion processes that significantly affect the build quality. However, the gas dynamics and its induced driving forces for the powder motions have not been well quantified. A numerical model is developed to investigate such powder-gas interactions. With a combination of computational fluid dynamics and particle tracking techniques, the model is capable of simulating the transient gas flow field surrounding the powder and the forces exerted on powder surfaces. The interaction between metal powders and a free jet is investigated with the current model. In the simulation results, the entrainment and the ejection motions of powders with respect to the free jet can be predicted. It is found that the driving forces of these motions are majorly contributed by the pressure differences in the gas flow surrounding the powder, and the powders can also interact with the jet to significantly alter the flow field. Quantities that are difficult to measure by experiments are quantified by the simulations, such as the velocity/pressure fields in the gas as well as the subjected forces and torques on powders. Such quantitative information provides insights about the mechanisms of the powder-gas interaction in laser powder bed fusion processes.

Funder

National Science Foundation

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3