Review of Visual Measurement Methods for Metal Vaporization Processes in Laser Powder Bed Fusion

Author:

Liu Jiaqi1,Wei Bin1,Chang Hongjie1,Li Jie2,Yang Guang1

Affiliation:

1. College of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China

2. Shijiazhuang Information Engineering Vocational College, Shijiazhuang 050000, China

Abstract

Laser powder bed fusion (LPBF) is of great importance for the visual measurement and analysis of the metallization process, which is the process of solid, liquid, and gas phase transformations of metal powders under high-energy laser irradiation due to the low boiling point/high saturated vapor pressure. Since the evaporation of metals involves the interaction of driving forces such as vapor back pressure, surface tension, and gravity, the movement of the melt pool is not stable. At the same time, it also produces vaporization products such as vapor plumes and sprays, which cause defects such as bubbles, porosity, lack of fusion, inclusions, etc., during the manufacturing process of the parts, affecting the performance and manufacturing quality of the parts. More and more researchers are using imaging technologies, such as high-speed X-ray, high-speed visible light cameras, and high-speed schlieren imaging, to perform noncontact visual measurements and analyses of the melt pool, vapor plume, and spatter during the metal evaporation process, and the results show that the metal evaporation process can be suppressed by optimizing the process parameters and changing the processing atmosphere, thereby reducing part defects and improving part performance and built part quality. This paper reviews the research on metal evaporation mechanisms and visual measurement methods of metal evaporation, then discusses the measures of metal evaporation, and finally summarizes and prospects the future research hotspots of LPBF technology, according to the existing scholars’ research on numerical simulation analysis and visual measurement methods of the metal evaporation process.

Funder

Guang Yang

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3