3D Printing of Flexible and Stretchable Parts Using Multiwall Carbon Nanotube/Polyester-Based Thermoplastic Polyurethane

Author:

Stan Felicia1,Stanciu Nicoleta-Violeta1,Constantinescu Adriana-Madalina1,Fetecau Catalin1

Affiliation:

1. Center of Excellence Polymer Processing, Dunarea de Jos University of Galati, 47 Domneasca, 800 008 Galati, Romania

Abstract

Abstract This paper reports on the 3D printing of flexible and stretchable parts based on multiwall carbon nanotube (MWCNT)/polyester-based thermoplastic polyurethane (TPU) nanocomposites. The rheological properties of the WCNT/TPU nanocomposites with different wt% of MWCNTs (0.1–3) were determined and used as guidance for the extrusion and 3D printing processes. MWCNT/TPU filaments were extruded and used for 3D printing of different flexible and stretchable parts. The mechanical, electrical, and piezoresistive response of the MWCNT/TPU nanocomposite filaments and 3D printed parts under static and monotonic loading was studied. The experimental results show that with increasing temperature and shear rate, respectively, the shear viscosity of the MWCNT/TPU nanocomposite decreases, whereas the viscosity increases with increasing wt% of MWCNTs. With the addition of MWCNTs, the elastic modulus and tensile strength of the feedstock filament all increase, enhancing the printability of TPU by increasing the buckling resistance and the stability of the 3D printed layer. The electrical conductivity of the 3D printed MWCNT/TPU nanocomposites increases with increasing wt% of MWCNTs and exceeds the conductivity of the filaments. The 3D printed MWCNT/TPU nanocomposites with 3 wt% show an electrical conductivity about 10 S/m, irrespective of the printing direction. Moreover, the 3D printed MWCNT/TPU nanocomposites exhibit good mechanical properties and high piezoresistive sensitivity with gauge factor (50–600) dependent on both strain and printing direction.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3