3D Printing of Carbon Nanotube (CNT)/Thermoplastic Polyurethane (TPU) Functional Composites and Preparation of Highly Sensitive, Wide‐range Detectable, and Flexible Capacitive Sensor Dielectric Layers via Fused Deposition Modeling (FDM)

Author:

Yang Leipeng123ORCID,Liu Xin1,Xiao Yuan1ORCID,Zhang Yongyan1,Zhang Gaiping13,Wang Yuping1

Affiliation:

1. School of Mechanical and Electrical Engineering Xi'An Polytechnic University Xi'an 710048 P. R. China

2. Taizhou Research Institute Zhejiang University of Technology Taizhou 318000 P. R. China

3. School of Materials Science and Engineering Xi'an University of Technology Xi'an 710048 P. R. China

Abstract

AbstractAs one of the widely used additive manufacturing technologies, FDM has been limited by small variety of available materials, poor mechanical properties, and lack of functionality of the FDM‐printed parts. In this study, CNT/TPU filaments are prepared, and their thermal behavior is determined to lay the foundation for FDM process. The effects of the CNT content on the mechanical and conductivity properties of FDM‐printed samples are investigated, and the FDM‐printed CNT/TPU dielectric layers are explored for capacitive sensing applications. The results show that the incorporation of CNT significantly affects their mechanical, electrical, and capacitive sensing properties. The addition of 6 wt.% CNT increases the tensile strength by 199%, the flexural strength by 34%, and the electrical resistivity from 1.35 × 1010 to 7.26 × 103 Ω sq−1. The sensitivity of the sensor with the FDM‐printed CNT/TPU dielectric layer microstructure is 0.04034 kPa−1 (0–20 kPa). The prepared CNT/TPU sensors have the advantages of wide detection range (0–800 kPa), a rapid response time (60 ms), and good repeatability, and have potential applications in detecting physical pressure, human motion, and human‐computer interaction. In conclusion, the CNT/TPU composite prepared in this study increases the types of suitable materials for FDM and expands the application potential of FDM.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3