Friction Reduction in Lubricated Rough Contacts: Numerical and Experimental Studies

Author:

Liu Zhiqiang1,Gangopadhyay Arup2

Affiliation:

1. Ford Motor Company, Dearborn, MI 48121 e-mail:

2. Ford Motor Company, Dearborn, MI 48121

Abstract

Combining the contact model of elastic-layered solid with the concept of asperity contact in elastohydrodynamic lubrication (EHL), a mixed-lubrication model is presented to predict friction coefficient over rough surfaces with/without an elastic-layered medium under entire lubrication regimes. Solution of contact problems for elastic-layered solids is presented based upon the classical model of Greenwood and Williamson (GW) in conjunction with Chen and Engel's analysis. The effects of the Young's modulus ratio of the layer to substrate and the thickness of the layer on the elastic real area of contact and contact load for a fixed dimensionless separation are studied using the proposed method, which is used for the asperities having contact with an elastic coating. Coefficient of friction with elastic-layered solids in boundary lubrication is calculated in terms of Rabinowicz's findings and elastic-layered solutions of Gupta and Walowit. The effect of rough contacts with an elastic layer on friction coefficient in lubrication regimes has been analyzed. Variations in plasticity index ψ significantly affect friction coefficients in boundary and mixed lubrications. For a large value of ψ, the degree of plastic contact exhibits a stronger dependence of the mean separation or film thickness than the roughness, and for a small value of ψ, the opposite result is true. The effect of governing parameters, such as inlet oil viscosity at ambient pressure, pressure–viscosity coefficient, combined surface roughness, and El/E2 on friction coefficient, has been investigated. Simulations are shown to be in good agreement with the experimental friction data.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3