Tribological Characteristics and Load-Sharing of Point-Contact Interface in Three-Body Mixed Lubrication

Author:

Horng Jeng-Haur1,Yu Chia-Chun1,Chen Yang-Yuan1

Affiliation:

1. Department of Power Mechanical Engineering, National Formosa University, No. 64, Wunhua Rd., Huwei Township, Yunlin County 632, Taiwan

Abstract

Abstract The third particle occurred at the interface of contacting surfaces is common situations in relative motion part. This study involved developing an analysis framework to investigate the contact characteristics in the full range of 3-body mixed lubrication. Conventional 2-body mixed lubrication is a special case of 3-body mixed lubrication analysis with particle size of zero. This study revealed that the values of real contact area, film thickness, contact mode, and the solid contact load in 3-body contact were larger than those in ideal 2-body contact in mixed lubrication, and they increased with an increasing particle size or density under the study conditions. The initial stages and transition processes of four types of 3-body contact modes under mixed lubrication were significantly different for different particle sizes and densities. The size of the third particle increased the values of both minimum and maximum values, λmin and λmax, of film parameter in the mixed lubrication regime. The particle density did not have a significant effect on the λmax value in mixed lubrication. Higher particle density led to a larger λmin value in mixed lubrication. The conventional film parameter, λ, was not a sufficient indicator of the different lubrication regimes in 3-body contact.

Funder

Ministry of Science and Technology, Taiwan

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3