Estimation of Simulated Left Ventricle Elastance Using Lumped Parameter Modelling and Gradient-Based Optimization With Forward-Mode Automatic Differentiation Based on Synthetically Generated Noninvasive Data

Author:

Laubscher Ryno1,Van Der Merwe Johan1,Herbst Philip2,Liebenberg Jacques2

Affiliation:

1. Institute for Biomedical Engineering, Department of Mechanical and Mechatronic Engineering, Stellenbosch University , Stellenbosch 7602, South-Africa

2. Division of Cardiology, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town 7750, South-Africa

Abstract

Abstract The present study evaluates a parameter discovery approach based on a lumped parameter model of the cardiovascular system in conjunction with optimization to approximate important cardiac parameters, including simulated left ventricle elastances. Important parameters pertaining to ventricular function were estimated using gradient optimization and synthetically generated measurements. Forward-mode automatic differentiation was used to estimate the cost function-parameter matrices and compared to the common finite differences approach. Synthetic data of healthy and diseased hearts were generated as proxies for noninvasive clinical measurements and used to evaluate the algorithm. Twelve parameters including left ventricle elastances were selected for optimization based on 99% explained variation in mean left ventricle pressure and volume. The hybrid optimization strategy yielded the best overall results compared to 1st order optimization with automatic differentiation and finite difference approaches, with mean absolute percentage errors ranging from 6.67% to 14.14%. Errors in left ventricle elastance estimates for simulated aortic stenosis and mitral regurgitation were smallest when including synthetic measurements for arterial pressure and valvular flow rate at approximately 2% and degraded to roughly 5% when including volume trends as well. However, the latter resulted in better tracking of the left ventricle pressure waveforms and may be considered when the necessary equipment is available.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3