An intelligent aortic valve model for complete cardiac cycle

Author:

Iscan Mehmet1ORCID,Yesildirek Aydin1ORCID

Affiliation:

1. Mechatronics Engineering Department Yildiz Technical University Istanbul Turkey

Abstract

AbstractThe aortic valve (AV) is crucial for cardiovascular (CV) hemodynamic, impacting cardiac output (CO) and left ventricular volumetric flow rate (LVQ). Its nonlinear behavior challenges standard LVQ prediction methods as well as CO one. This study presents a novel approach for modeling the AV in the CV system, offering an improved method for estimating crucial parameters like LVQ across various AV conditions, including aortic stenosis (AS). The model, based on AV channel length during the entire cardiac phase, introduces a time‐varying AV resistance (TV‐AVR) parameterized by the pressure ratio across the AV and LVQ, enabling the simulation of both healthy and AS‐related conditions. To validate this model, in vitro measurements are compared using a hybrid mock circulatory loop device. An unconventional use of a convolutional neural network (CNN) corrects the model's estimates, eliminating the need for labeled datasets. This approach, incorporating real‐time learning and transforming 1‐D CV signals into 2‐D tensors, significantly improves the accuracy of LVQ measurements, achieving an error rate of less than 3.41 ± 4.84% for CO in healthy conditions and 2.83 ± 1.35% in AS cases—a 33.13% enhancement over linear diode models. These results underscore the potential of this approach for enhancing the diagnosis, prediction, and treatment of AV diseases. The key contributions of the proposed method encompass nonlinear TV‐AVR estimation, investigation of transient CV responses, prediction of instantaneous CO, development of a flexible framework for noninvasive measurements integration, and the introduction of an adjustable resistance model using an extended Kalman filter (EKF) and CNN combination, all without requiring labeled data.

Publisher

Wiley

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3