A Novel Energy Storage System Based on Carbon Dioxide Unique Thermodynamic Properties

Author:

Astolfi Marco1,Rizzi Dario2,Macchi Ennio1,Spadacini Claudio2

Affiliation:

1. Department of Energy, Politecnico di Milano , Via Lambruschini 4, Milano (MI) 20156, Italy

2. Energy Dome SpA , Via Durando 39, Milano (MI) 20158, Italy

Abstract

Abstract This paper focuses on the thermodynamic performance and techno-economic assessment of a novel electrical energy storage technology using carbon dioxide as a working fluid. This technology, named CO2 battery and recently patented by Energy Dome SpA., addresses an energy market which has a great need for energy storage solutions able to handle the increasing share of nondispatchable renewable energy sources like photovoltaic and wind energy. After a brief introduction, the present study presents the concept of CO2 batteries and their operation. Then the detailed numerical model developed for the accurate calculation of system round trip efficiency is presented with the adopted assumptions and the optimization routine description. Results on the reference case and following sensitivity analysis confirm a round trip efficiency of around 77% (±2%) which makes CO2 batteries a very promising technology with respect to other energy storage systems based on thermodynamic cycles like compressed air and liquid air energy storage thanks to the high performance and the easiness of installation. Finally, calculation of system footprint, capital investment cost and levelized cost of storage are discussed.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3