Working Fluid Selection and Thermodynamic Optimization of the Novel Renewable Energy-Based RESTORE Seasonal Storage Technology

Author:

Alfani Dario1,Giostri Andrea1,Astolfi Marco1

Affiliation:

1. Department of Energy, Politecnico di Milano, Milano 20156, Italy

Abstract

Abstract Seasonal-based energy storage is expected to be one of the main options for the decarbonization of the space heating sector by increasing the renewables dispatchability. Technologies available today are mainly based on hot water and can only partially fulfill the efficiency, energy density and affordability requirements. This work analyzes a novel system based on pumped thermal energy storage (PTES) concept to maximize renewables and waste heat exploitation during summer and make them available during winter. Organic fluid-based cycles are adopted for the heat upgrade during hot season (heat pump (HP)) and to produce electricity and hot water during cold season (power unit (PU)). Upgraded thermal energy drives an endothermic reaction producing dehydrated solid salts, which can be stored for months using inexpensive and high energy density solutions. This paper focuses on thermodynamic cycles design, comparing the performance attainable with several working fluids. Two different configurations are investigated: coupled systems, sharing the fluid and heat exchangers in both operating modes, and decoupled systems. A preliminary economic assessment completes the study, including a sensitivity analysis on electricity and heat prices. Cyclopentane is identified as a promising working fluid for coupled systems, reaching competitive round trip efficiencies (RTEs), maximizing the ratio between performance and HX surfaces, without excessive turbomachinery volume ratios and volumetric flows. Economic analysis shows that solutions with lower efficiency, but also lower capital cost, can achieve competitive payback times (PBT). On the contrary, decoupled systems are less attractive, as they reach slightly higher thermodynamic performance, but require higher capital costs, possibly being of interest only in specific applications.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3