Design of Practical Liquid Metal Cooling Device for Heat Dissipation of High Performance CPUs

Author:

Deng Yueguang1,Liu Jing1

Affiliation:

1. Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China

Abstract

Broad societal needs have focused attention on technologies that can effectively dissipate huge amount of heat from high power density electronic devices. Liquid metal cooling, which has been proposed in recent years, is fast emerging as a novel and promising solution to meet the requirements of high heat flux optoelectronic devices. In this paper, a design and implementation of a practical liquid metal cooling device for heat dissipation of high performance CPUs was demonstrated. GaInSn alloy with the melting point around 10°C was adopted as the coolant and a tower structure was implemented so that the lowest coolant amount was used. In order to better understand the design procedure and cooling capability, several crucial design principles and related fundamental theories were demonstrated and discussed. In the experimental study, two typical prototypes have been fabricated to evaluate the cooling performance of this liquid metal cooling device. The compared results with typical water cooling and commercially available heat pipes show that the present device could achieve excellent cooling capability. The thermal resistance could be as low as 0.13°C/W, which is competitive with most of the latest advanced CPU cooling devices in the market. Although the cost (about 70 dollars) is still relatively high, it could be significantly reduced to less than 30 dollars with the optimization of flow channel. Considering its advantages of low thermal resistance, capability to cope with extremely high heat flux, stability, durability, and energy saving characteristic when compared with heat pipe and water cooling, this liquid metal cooling device is quite practical for future application.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3