Double-Sided Microchannel Cooling of a Power Electronics Module Using Power Overlay

Author:

Pautsch Adam G.1,Gowda Arun1,Stevanovic Ljubisa1,Beaupre Rich1

Affiliation:

1. GE Global Research Center, Niskayuna, NY

Abstract

In the continuing effort to alleviate the increasing thermal loads for power electronics devices, numerous aggressive solutions have been developed, such as small-scale micro-channel heat exchangers. Although these methods can improve overall surface heat transfer to the order of 500 W cm−2, they are limited to single-sided cooling due to the typical wire-bonded electrical connections of the devices. Power overlay (POL) technology provides a stable planar structure for electrical connection, as well as attachment of an additional top-side heat exchanger. This study presents an analysis of double-sided microchannel cooling of a power electronics module. Two optimized, integral micro-channel heat sinks were attached above and below silicon power devices, with more traditional attachment on one side and a POL interface on the other. A compliant TIM was selected for low thermal resistance and good mechanical response, which allowed top-side connection to the POL surface. A theoretical model is presented that predicts the benefit of double-sided cooling based on the known performance of a single-sided heat sink and given addition thermal contact resistance for the top side. For microchannels with water, an enhancement of 26% was predicted. An experiment was also carried out to measure the actual performance benefit seen with double-sided cooling. An enhancement of over 30% was measured for a particular design. As the theory predicts, the benefit of double-sided cooling is limited for high performance designs. However, double-sided cooling could lead to high levels of thermal performance using low-performance technology.

Publisher

ASMEDC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3